ASX: ABX

Higher grade rare earth targets now being drilled in Tasmania

- ABx has again discovered higher grade Rare Earth Elements (REE) at its Deep Leads rare earth discovery that extends well beyond ABx's DL130 bauxite deposit in northern Tasmania
- Hole DL187 returned a grade of 3,036 ppm total rare earths oxide ("TREO"), our highest REE grade to date from the Deep Leads discovery
- Hole DL187 represents an 870 metre southerly extension of the REE mineralisation
- The strike length of the Deep Leads REE now exceeds three kilometres (3km) and is open in several directions
- Drilling commenced on Tuesday to test for major extensions of the Deep Leads REE deposit to the northwest, northeast and south
- Recent harvesting of the hardwood plantation trees allows for rapid drill coverage and quick despatch of samples to the laboratory. More assays are pending.
- Our soluble rare earths deposit differs from the more traditional hard rock deposits in many ways and is dominated by the four super-magnet type of REEs see Figure 6.
- Results to date are consistent with the Ionic Adsorption Clay type of REE mineralisation (IAC)
 which can be rapidly developed and processed at low cost. ABx is advised that ABx is one of
 only three publicly listed discoverers of IAC deposits

ABx Group (ASX:ABX) is pleased to report recently received assay results from its Deep Leads rare earth element (**REE**) discovery at the DL130 bauxite deposit in northern Tasmania, which is now proven to extend for more than 3 kilometres - see Figure 3 and Table 1.

A new highest grade to date extends strike length by 870 metres

Results from hole DL187 set a new highest grade of total rare earth elements (TREO) from Deep Leads, returning 3,306 ppm TREO ¹. It also extends of the areal extent of the Deep Leads REE discovery, being located 870 metres further south than previous mineralised holes – see Figure 3.

Drilling for large extensions has begun

Harvesting of the hardwood plantation across Deep Leads has now been completed and drilling recommenced on Tuesday this week. The new drilling program is designed to test for:

- 1. High-grade extensions towards the northwest, northeast and the south see Figure 5
- 2. New host rock settings that are not covered by the bauxite layer
- 3. Deeper REE mineralisation beneath the bauxite at 10 to 20 metres depth that has not been tested by the shallow bauxite holes across the DL130 bauxite deposit

¹ See JORC Statement Appendix 1

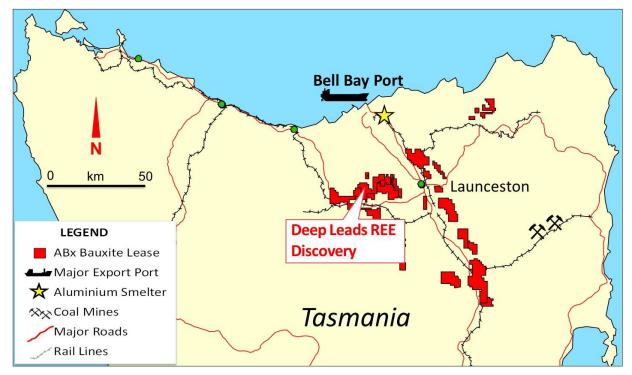


Figure 1: Location of ABx's Deep Leads REE Discovery in Northern Tasmania

Figure 2: Drilling underway at ABx's Deep Leads REE Discovery in the recently harvested hardwood plantation

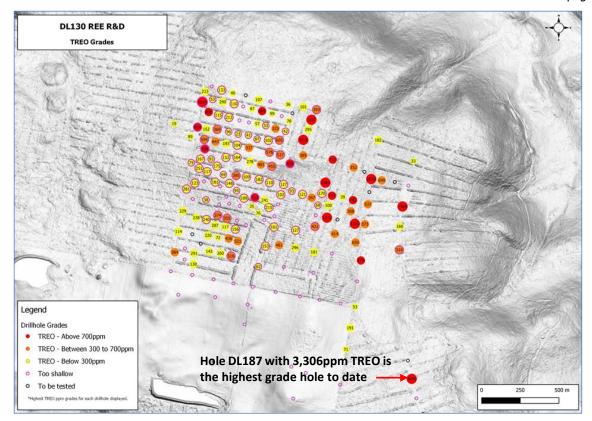


Figure 3: Drillhole grades of Total Rare Earth Element Oxides (ppm TREO) at Deep Leads Discovery.

Most early holes were too shallow to test the REE horizon which is in clays sitting above the basement rock. Higher grade zone covers an area 3km x 1.5km with extension targets to the NW, NE and South being tested by the new drill campaign. Hole DL187 is a significant 870 metre extension to the south.

Figure 4: Drilling the eastern flank of the Deep Leads REE discovery. The equipment is designed to fit between plantation hardwood trees which in this case, have just been harvested.

ABx drilling is conducted in accordance with ABx's paramount policy; to apply best practices on agricultural land; to leave land and environment better than we find it. We only operate where welcomed.

Significance of these results

- ABx's REE mineralisation is enriched in the super-magnetic rare earth elements neodymium (Nd), praseodymium (Pr), terbium (Tb) and dysprosium (Dy), which are strategically important, high priced metals needed for electric vehicles, wind turbines, smart phones and military electronics. Prices are rising rapidly as demand grows strongly - see Figure 6.
- ABx believes it has discovered "water-soluble" ionic adsorption clay REE resources that can be concentrated into a saleable precipitate by low-cost leaching with dilute water-based solutions (ASX release 13/09/2021).
- ABx's REE exploration has shown that REE extend for significant distances outside of the DL130 bauxite deposit and there is some evidence that grades of REE also increase away from the bauxite.
- 4. Drillholes up to 25 metres deep are required to reach the hard igneous bedrock to ensure that the entire REE mineralised clay and altered bedrock horizon is sampled.
- 5. Most of the early drillholes have ended at depths too shallow to fully test the REE mineralisation of the Deep Leads REE discovery.

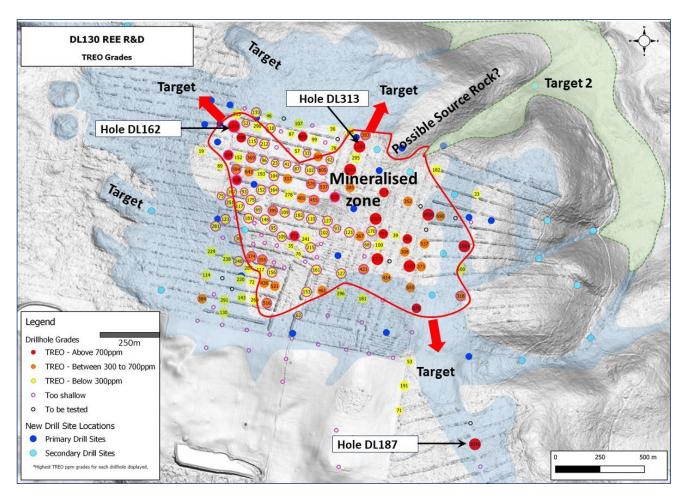


Figure 5: Drill results across the Deep Leads REE discovery area to date and ABx's planned drilling campaigns. Drilling has recommenced on Tuesday 12 October using a rig adapted to suit drilling in hardwood plantations.

Summary comments

ABx Operations Manager, Nathan Towns said; "The current drilling campaign could not have commenced without the assistance of landholders, including Forico. We appreciate their support and we will not let them down.

Conducting exploration during a pandemic and a mineral boom is challenging but ABx has managed to press ahead despite the Covid-19 restrictions.

We eagerly await the imminent granting of our large new Exploration License covering several attractive REE targets that exist east of our current Deep Leads discovery."

ABx CEO, Ian Levy said; "Prices for the four super-magnet REE are still rising strongly – see Figure 6. ABx is targeting the IAC type of REE mineralisation that can be developed fastest to give ABx shareholders an opportunity to capture some of the value from this bull market situation".

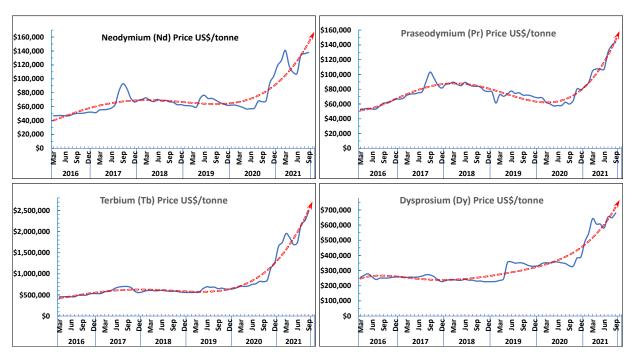


Figure 6: Prices per tonne for the 4 super-magnet REE

Sources: Chinese exports, cross-referenced with Kitco data.

This announcement is authorised by the Board of Australian Bauxite Limited.

For further information please contact:

Ian Levy, CEO ABx Group

Mobile: +61 407 189 122

Email: <u>ilevy@australianbauxite.com.au</u>

Table 1: REE drill results Deep Leads Discovery

Hole ID	From (m)	To (m)	Northing	Easting	TREO (ppm)	Basement Reached?
DL187	5	6	5408943	479500	1911	Yes
DL187	6	7	5408943	479500	3036	Yes
DL316	2	3	5409888	479079	221	Yes
DL316	3	4	5409888	479079	296	Yes
DL316	4	5	5409888	479079	2363	Yes
DL170	3	4	5409906	479301	920	Yes
DL170	4	5	5409906	479301	2030	Yes
DL177	3	4	5409774	479453	1584	Yes
DL321	6	7	5409690	479222	1310	Yes
DL327	6	7	5409719	479087	44	Yes
DL327	7	8	5409719	479087	228	Yes
DL327	8	9	5409719	479087	1272	Yes
DL162	6	7	5410275	478481	1150	No
DL162	7	8	5410275	478481	1140	No
DL162	8	9	5410275	478481	1214	No
DL313	8	9	5410191	479010	482	Yes
DL313	9	10	5410191	479010	1107	Yes
DL315	8	9	5410094	478971	1016	Yes
DL236	8	9	5410154	478458	934	No
DL135	7	8	5410049	478494	928	No
DL133	3	4	5410227	478512	249	Yes
DL293	4	5	5410227	478512	228	
	5	6		478512		Yes
DL293			5410227		898	Yes
DL298	7	8	5410232	478771	885	Yes
DL298	8	9	5410232	478771	194	Yes
DL180	4	5	5409513	479252	616	Yes
DL180	5	6	5409513	479252	878	Yes
DL156	6	7	5409979	478907	835	No
DL315	3	4	5410094	478971	61	Yes
DL315	5	6	5410094	478971	522	Yes
DL315	9	10	5410094	478971	800	Yes
DL315	9	10	5410094	478971	789	Yes
DL319	4	5	5409804	479213	66	Yes
DL319	5	6	5409804	479213	677	Yes
DL319	5	6	5409804	479213	466	Yes
DL319	6	7	5409804	479213	358	Yes
DL319	7	8	5409804	479213	696	Yes
DL319	8	9	5409804	479213	782	Yes
DL317	6	7	5409825	479111	747	Yes
DL317	8	9	5409825	479111	318	Yes
DL172	4	5	5409999	479114	235	Yes
DL172	5	6	5409999	479114	717	Yes
DL215	10	11	5409815	478737	712	No
DL215	11	12	5409815	478737	370	No
DL324	6	7	5409900	479352	690	Yes
DL167	4	5	5409600	479226	655	Yes
DL238	6	7	5410084	478545	643	Yes
DL157	8	9	5410092	478855	605	No
DL239	7	8	5410094	478491	594	No
DL227	8	9	5410034	478807	576	No
DL228	6	7	5410021	478860	537	No
DL169	5	6	5409784	479285	537	Yes
DL303	7	8	5409604	478655	521	Yes
DL303	8	9	5409604	478655	394	Yes
DL303	8	9	5409604	478655	464	Yes
DL306	8	9	5409533	478622	516	No
DL238	7	8	5410084	478545	484	Yes
DL329	11	12	5409586	478855	461	Yes
DL221	8	9	5409966	478819	455	No
J			3.03300	1,0013	,,,,	

Hole ID	From	То	Northing	Easting	TREO	Basement
	(m)	(m)			(ppm)	Reached?
DL302	7	8	5409617	478611	436	Yes
DL228	6	7	5410021	478860	436	No
DL228	8	9	5410021	478860	433	No
DL221	11	12	5409966	478819	424	No
DL165	7	8	5409676	479029	421	No
DL166	1	2	5409641	479125	414	Yes
DL222	8	9	5409974	478766	401	Yes
DL238	7	8	5410084	478545	396	Yes
DL217	11	12	5409921	478646	395	No
DL163	8	9	5410240	479035	393	No
DL222	7	8	5409974	478766	392	Yes
DL222	7	8	5409974	478766	391	Yes
DL173	5	6	5410019	478971	385	Yes
DL149	7	8	5409550	478349	384	Yes
DL243	7	8	5409729	478557	374	No
DL168	4	5	5409688	479271	373	Yes
DL222	6	7	5409974	478766	371	Yes
DL221	9	10	5409966	478819	370	No
DL234	8	9	5410143	478553	369	No
DL309	6	7	5409815	479013	367	Yes
DL266	7	8	5409715	478602	355	No
DL171	5	7	5409962	479215	352	Yes
DL226	6	7	5410055	478708	337	Yes
DL287	11	12	5410148	478836	333	Yes
DL149	8	9	5409550	478349	331	Yes
DL179	4	5	5409565	479438	318	No
DL320	6	7	5409750	479202	308	Yes
DL228	5	6	5410021	478860	301	No
DL221	10	11	5409966	478819	300	No
DL167	5	6	5409600	479226	299	Yes
DL227	5	6	5410034	478807	298	No
DL330	11	12	5409574	478933	296	Yes
DL314	8	9	5410144	478995	295	Yes
DL247	4	5	5409545	478443	291	Yes
DL329	7	8	5409586	478855	290	Yes
DL295	11	12	5410276	478580	290	Yes
DL244	5	6	5409680	478544	287	Yes
DL313	6	7	5410191	479010	284	Yes
DL152	4	5	5409855	478405	281	No
DL223	8	9	5409988	478713	278	Yes
DL320	7	8	5409750	479202	273	Yes
DL305	6	7	5409546	478571	260	Yes
DL259	8	9	5409955	478466	251	No
DL216	11	12	5409802	478785	241	Yes
DL253	8	9	5409708	478502	240	No
DL254	4	5	5409717	478453	238	Yes
DL239	6	7	5410094	478491	236	No
DL151	5	6	5409749	478388	229	Yes
DL295	11	12	5410276	478580	223	Yes
DL245	6	7	5409632	478511	220	Yes
DL245	7	8	5410055	478708	218	Yes
DL214	14	15	5409767	478805	215	No
DL284	3	4	5410326	478494	213	Yes
DL284	10	11	5410201	478434	212	No
DL251	7	8	5409708	478502	203	
		7	5410144			No Vos
DL314	6			478995	198	Yes
DL303	5	6	5409604	478655	194	Yes
DL216	7	8	5409802	478785	194	Yes
DL237	8	9	5410075	478597	193	Yes
DL183	5	6	5409188	479201	191	Yes

Hole ID	From	То	Northing	Easting	TREO	Basement
	(m)	(m)			(ppm)	Reached?
DL151	4	5	5409749	478388	183	Yes
DL219	7	8	5409902	478757	182	No
DL174	0	1	5410094	479334	182	Yes
DL261	8	9	5409889	478544	181	No
DL331	10	11	5409553	479025	181	Yes
DL331	11	12	5409553	479025	179	Yes
DL245	7	8	5409632	478511	177	Yes
DL134	0	1	5409966	478553	175	No
DL163	7	8	5410240	479035	173	No
DL309	7	8	5409815	479013	170	Yes
DL311	11	12	5409836	479062	170	No
DL258	6	7	5410000	478473	167	No
DL223	6	7	5409988	478713	166	Yes
DL224	11	12	5410008	478650	164	No
DL291	11	12	5410201	478610	163	No
DL130	9	10	5409673	478830	161	No
DL295	12	13	5410276	478580	161	Yes
DL178	1	2	5409678	479440	160	Yes
DL269	6	7	5409662	478643	156	No
DL295	10	11	5410276	478580	155	Yes
DL269	8	9	5409662	478643	154	No
DL138	8	9	5409581	478789	153	No
DL217	8	9	5409921	478646	152	No
DL235	5	6	5410144	478500	152	Yes
DL228	4	5	5410021	478860	152	No
DL247	5	6	5409545	478443	152	Yes
DL240	7	8	5410008	478596	152	No
DL244	6	7	5409680	478544	149	Yes
DL217	8	9	5409921	478646	149	No
DL133	8	9	5409883	478613	148	No
DL311	10	11	5409836	479062	144	No
DL304	5	6	5409555	478516	143	Yes
DL221	1	2	5409966	478819	140	No
DL077	4	5	5400855	475893	137	Yes
DL077	4	5	5400855	475893	137	Yes
DL161	6	7	5410333	478575	133	No
DL248	6	7	5409493	478440	130	Yes
DL287	6	11	5410148	478836	128	Yes
DL164	8	9	5409658	478935	127	No
DL155	8	9	5409879	478876	127	No
DL257	7	8	5409884	478446	123	No
DL308	11	12	5409831	478968	121	No
DL260	8	9	5409939	478505	117	No
DL270	4	5	5409673	478594	117	Yes
DL258	8	9	5410000	478473	116	No
DL292	8	9	5410212	478559	115	No
DL150	5	6	5409650	478367	114	Yes
DL220	11	12	5409887	478808	110	No
DL296	16	17	5410267	478635	110	No
DL132	14	15	5409812	478684	109	No
DL218	11	12	5409914	478696	109	No
DL240	8	9	5410008	478596	108	No
DL330	7	8	5409574	478933	107	Yes
DL281	6	7	5410287	478754	107	Yes
DL239	2	3	5410094	478491	105	No
DL308	10	11	5409831	478968	105	No
DL225	8	9	5410067	478650	104	No
DL132	14	15	5409812	478684	103	No
DL272	8	9	5409829	478863	102	No
DL229	11	12	5410091	478802	102	No

Hole ID	From	То	Northing	Fasting	TREO	Basement
	(m)	(m)		Easting	(ppm)	Reached?
DL312 DL328	9	10 5	5410253	478971 479094	101	Yes Yes
DL328	7	8	5409778 5410067	478650	100	No
DL299	4	5	5410220	478820	99	Yes
DL233	8	9	5410132	478609	96	No
DL237	6	7	5410075	478597	96	Yes
DL226 DL277	5 8	9	5410055 5409848	478708 478648	96 95	Yes No
DL277	7	8	5410212	478559	95	No
DL218	8	9	5409914	478696	94	No
DL307	8	9	5409847	478916	93	No
DL279	5	6	5410000	478525	93	No
DL279 DL299	11 5	12 6	5410000 5410220	478525 478820	90 90	No Yes
DL136	7	8	5410108	478423	89	Yes
DL285	5	6	5410243	478723	87	Yes
DL230	9	10	5410097	478747	87	No
DL238	4	5	5410084	478545	86	Yes
DL307 DL230	7 11	12	5409847 5410097	478916 478747	84 83	No No
DL230	5	6	5409921	478646	80	No
DL312	8	9	5410253	478971	80	Yes
DL274	7	8	5410184	478902	78	Yes
DL218	10	11	5409914	478696	78	No
DL131 DL153	11 8	12 9	5409740 5409982	478754 478428	76 75	Yes
DL133	10	11	5410097	478747	75	No No
DL131	11	12	5409740	478754	74	Yes
DL301	4	5	5409621	478559	72	Yes
DL135	4	5	5410049	478494	71	No
DL184 DL278	8	5 9	5409084 5409925	479181 478584	71 69	Yes No
DL278	7	8	5409923	479043	68	No
DL150	4	5	5409650	478367	68	Yes
DL257	8	9	5409884	478446	64	No
DL136	4	5	5410108	478423	64	Yes
DL139 DL224	8 10	9	5409482 5410008	478755 478650	62 59	No No
DL133	5	6	5409883	478613	58	No
DL289	9	10	5410171	478748	57	Yes
DL219	2	3	5409902	478757	56	No
DL220	1	2	5409887	478808	54	No
DL235 DL134	3 7	8	5410144 5409966	478500 478553	54 54	Yes No
DL182	1	2	5409289	479224	53	Yes
DL294	7	8	5410288	478531	53	No
DL320	4	5	5409750	479202	52	Yes
DL168	2	3	5409688	479271	52	Yes
DL289 DL312	13 6	7	5410171 5410253	478748 478971	47 46	Yes Yes
DL282	8	9	5410233	478629	46	Yes
DL161	4	5	5410333	478575	43	No
DL273	8	9	5410135	478885	42	No
DL272	6	7	5409829	478863	42	No
DL273 DL231	7 11	8 12	5410135 5410116	478885 478705	41 41	No No
DL318	3	4	5409819	479163	39	Yes
DL256	6	7	5409803	478500	38	No
DL280	5	6	5410265	478897	36	Yes
DL276	7	8	5409773	478722	35	Yes
DL229 DL282	9 7	10 8	5410091 5410319	478802 478629	35 34	No Yes
DL282	3	4	5410319	478559	34	Yes
DL256	7	8	5409803	478500	34	No
DL175	3	4	5409993	479505	33	Yes
DL288	8	9	5410162	478789	33	No
DL175	3	4	5409993	479505	31	Yes
DL171 DL296	3 9	10	5409962 5410267	479215 478635	27 26	Yes No
DL232	7	8	5410121	478655	23	No
DL175	2	3	5409993	479505	20	Yes
DL137	2	3	5410170	478344	19	Yes
DL296	14	15	5410267	478635	15	No

Qualifying statements

General regarding exploration data and reporting

Information in this report that relates to Exploration Information is based on information compiled by Ian Levy who is a Fellow of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and a qualified geologist. Mr Levy is a director of Australian Bauxite Limited trading as ABx Group.

Nathan Towns, the Operations Manager who conducted the sampling and testwork at the ABx Research Laboratory in Western Junction, near Launceston Airport has been conducting research projects to ISO standards at both the ABx Research Laboratory in Tasmania and the advanced Alcore Research Centre at Berkeley Vale, Central Coast NSW for more than 7 years.

Ian Levy has sufficient experience relevant to the mineralisation style and deposit type under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ian Levy consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Tasmania

The information relating to Exploration Information and Mineral Resources in Tasmania has been prepared or updated under the JORC Code 2012. Mr Levy has sufficient experience, which is relevant to the mineralisation style and deposit type under consideration and to the activity undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.

Mr Levy has consented in writing to the inclusion in this report of the Exploration Information in the form and context in which it appears.

Disclaimer Regarding Forward Looking Statements

This ASX announcement (Announcement) contains various forward-looking statements. All statements other than statements of historical fact are forward-looking statements. Forward-looking statements are inherently subject to uncertainties in that they may be affected by a variety of known and unknown risks, variables and factors which could cause actual values or results, performance or achievements to differ materially from the expectations described in such forward-looking statements.

ABx does not give any assurance that the anticipated results, performance or achievements expressed or implied in those forward-looking statements will be achieved.

JORC Code, 2012 Edition - Table 1 report

See ASX release dated 04 May 2021 and update in Appendix 1 following.

APPENDIX 1

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Drill holes samples to 25 metres maximum depth but typically to 12 metres depth
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Reverse circulation rotary percussion
Drill sample recovery	 Method of recording & assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery & ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Weight tests indicated reliable sample recovery
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geologically logged in detail by senior professional geologists. Every sample photographed, with photos and logs and assays entered into ABx's proprietary ABacus database.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Chips are subsampled using bauxite shovel method in accordance with ISO standards

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external lab checks) & whether acceptable levels of accuracy (ie lack of bias) & precision have been established. 	 All assaying done at NATA-registered commercial laboratories of ALS Brisbane Australia and Labwest Minerals Analysis Pty Ltd in Western Australia. Duplicate interlab assays done. Round robin assays with 4 other major laboratories confirmed accuracy and precision meets industry standards.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All assaying done at NATA-registered commercial laboratories of ALS Brisbane Australia and Labwest Minerals Analysis Pty Ltd in Western Australia. Duplicate interlab assays showed excellent correspondence.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 GPS hole locations have been tested for accuracy on many prospects, all satisfactorily – within 1m.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Drilling typically at 50 to 75 metre spacing on mineralised prospects
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Vertical holes through flat-dipping bauxite is as good as it gets
Sample security	The measures taken to ensure sample security.	Samples collected and assembled onto pallets every day
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Several audits confirmed reliability

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	Satisfactory to excellent. All tenements are unencumbered
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 3 industry majors and two customers have approved exploration methods and data collection, interpretation and reporting
Geology	Deposit type, geological setting and style of mineralisation.	Bauxite deposit formed on Lower Tertiary basalts
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 GPS location. Airborne Radar RL topography All holes are short straight vertical holes
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All data is presented. To enable comparisons between different mixtures of valuable elements, an aggregation into a price-weighted equivalence of Neodymium oxide was used as follows: Nd2O3 equivalent = Nd2O3 + 1.01 x Pr2O3 + 11.89 x Tb2O3 + 4.64 x Dy2O3.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Mineralisation typically 3 to 6 metres thick and Drillholes are sampled at 1 metre intervals
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• N.A.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All new results are reported in this report
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• N.A.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	To be planned