

2 February 2023

ASX: ABX

Widespread High Extractions of Ionic Adsorption Clay Rare Earths

High extractions achieved for batch of 71 samples

Up to 83% extraction of high value rare earth mineralisation

Six channels of this main type of mineralisation identified

Drill campaign to enlarge project commenced ahead of schedule on 17 January

ABx Group Limited (ASX: ABX) (**ABx**) has received results from its representative batch of 71 desorption tests on rare earth element (REE) samples from its Deep Leads and Rubble Mound deposits in northern Tasmania (see Figures 2 and 3). The desorption tests were conducted by ANSTO at Lucas Heights in Sydney, which has extensive experience in metallurgical testing of clay-hosted rare earth deposits worldwide. Tests were conducted at 'standard' desorption conditions of 0.5 M ammonium sulfate at pH 4, which are low-acid, low-cost processing conditions for ionic adsorption clay REE (IAC REE).

Highest reported extractions from clay-hosted REE prospect in Australia: The extractions of contained REE ranged from 24% to 83% for the 44 samples from the extensive IAC REE zones in the Maiden Resource estimate announced on 23 November 2022. 73% of the samples from the more closely-drilled Deep Leads project area had minimum 24% extraction and average 50% extraction (Table 1, Figure 3). These confirm that Deep Leads is an ionic adsorption clay REE deposit.

Samples from IAC REE zones of Rubble Mound performed similarly to the samples from IAC REE zones of Deep Leads. Current drilling is focussed on extending these IAC REE zones.

Figure 1 Sunrise at Deep Leads drill site, northern Tasmania

Figure 2 Overview of Deep Leads project area in hardwood plantations and open farmland, northern Tasmania

ABx Group Limited ABN 14 139 494 885

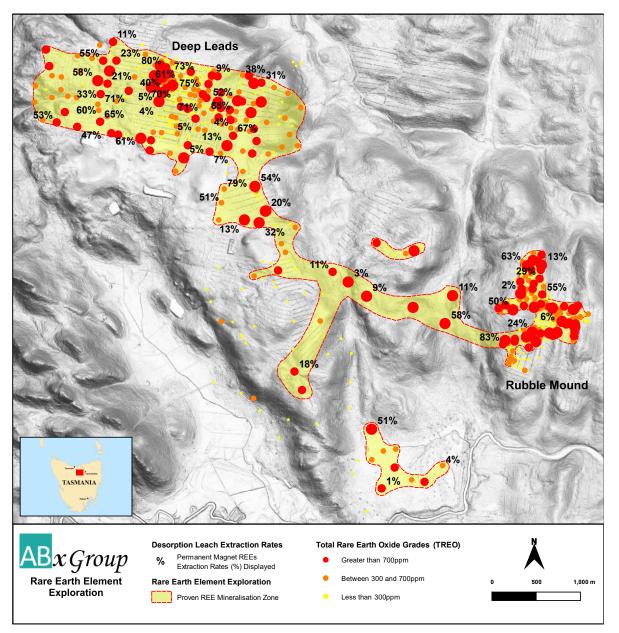
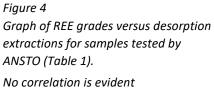


Figure 3: Deep Leads-Rubble Mound drillholes and desorption extractions for the samples tested by ANSTO

Results from Deep Leads and Rubble Mound projects are both excellent

ABx tested representative samples from Deep Leads and Rubble Mound. The results increased ABx's understanding of variations in REE extraction and, most importantly, confirmed that both Deep Leads and Rubble Mound have large zones of genuine ionic adsorption clay REE mineralisation. Some zones have exceptionally high extraction, including 83% extraction for one sample from Rubble Mound, which is only in the early stages of drill evaluation.


Deep Leads has been drilled more extensively, and 36 of the 49 samples (73% of samples) achieved extractions above 24%, averaging 50% overall.

Large potential extensions to the IAC REE zones have been identified by this testwork at both Deep Leads and Rubble Mound, and the drill rig that is currently exploring at Deep Leads and Rubble Mound has been deployed to drill out these newly identified IAC REE zones.

High extractions were achieved from drillholes that were geographically widespread across Deep Leads and Rubble Mound, and came from drill samples taken from a range of depths. High extractions were obtained from the full range of REE grades and were not restricted to the higher grade samples (Figure 4).

An advantage of this IAC REE type of mineralisation is that it is proportionally enriched in the four most valuable REE that are used in permanent magnets, namely praseodymium (Pr), neodymium (Nd), terbium (Tb) and dysprosium (Dy). Furthermore, the extractions achieved from these desorption tests are highest for these permanent magnet REE (Table 1).

It is significant that these results were obtained using ammonium sulfate at pH 4, which is similar to the conditions used in China for purely ionic adsorption clay type deposits. Many clay-hosted REE deposits can require lower pH to achieve similar levels of REE extraction.

ABx CEO and Managing Director, Mark Cooksey, commented, "It is extremely pleasing to confirm that there is widespread ionic adsorption clay rare earths at Deep Leads and Rubble Mound. ABx is expediting both its drilling program and its process development program, with the objective of bringing this project into production as soon as possible. New supply is essential to meet the rapidly increasing global demand for rare earths."

Process Development

The widespread high extractions mean that ABx can give more consideration to processing of ionic adsorption clay REE deposits, namely mining, desorption, impurity removal and precipitation. Optimised processes are crucial to maximising the profitability of a rare earth project.

ABx has already engaged with ANSTO on the desorption tests described here, and is developing relationships with other organisations with expertise in rare earths.

The results also enable early development of rehabilitation technologies that suit the Tasmanian setting of the ABx deposits within hardwood plantations that may be replanted after REE production.

Drilling Program

ABx has been conducting further drilling of the Deep Leads and Rubble Mound deposits since 17 January this year and is expediting assay results (see ASX release 23 January 2023).

Drilling of the outlying greenfield areas during the second half of 2022 was highly successful. It was conducted subject to a Tasmanian State Government, Exploration Drilling Grant Initiative (EDGI) for co-funded exploration drilling projects, which is gratefully acknowledged.

This announcement is approved for release by the board of directors.

For further information please contact:

Dr Mark Cooksey MD & CEO ABx Group Mobile: +61 447 201 536 Email: <u>mcooksey@abxgroup.com.au</u>

Website: abxgroup.com.au

Table 1: Results of Desorption Tests by ANSTO

				$NH_4)_2SO_4$ for 0.5 h, 2 wt%, room Drill sample REE grades ppm.		Desorption Extraction Rates (%)					
Summary results			G	DA 94 grid		See AS	X release 23	/10/22	at AN	STO, Lucas H	leights
	From	Та			RL	TREO ¹	Perm	TREO -	Total	Perm	REEs -
Hole	From (m)	To (m)	Easting	Northing	collar	ppm	Magnet	CeO ₂ ³	REEs ⁴	Magnet	Ce ⁶
	(,	(111)			contai		REOs ²	ppm	%	REEs ⁵ %	%
DEEP LE	ADS PRO.	JECT ARE	EA (WELL DR	ILLED)							
DL162	6	7	478481	5410273	315	1163	320	928	66%	80%	79%
DL185	8	9	479153	5408911	306	486	152	416	68%	79%	73%
DL227	8	9	478807	5410032	319	583	160	457	60%	75%	70%
DL435	8	9	478536	5410208	323	707	187	574	64%	73%	72%
DL484	5	6	478881	5409907	330	594	163	454	63%	71%	70%
DL407	6	7	478071	5410013	310	740	133	523	51%	71%	55%
DL433	5	6	478485	5410193	311	895	215	688	58%	70%	69%
DL180	4	5	479252	5409511	307	627	132	410	56%	67%	64%
DL422	9	10	478493	5410279	314	774	227	723	62%	67%	65%
DL539	3	4	477748	5409664	286	1075	252	870	55%	65%	64%
DL411	6	7	478950	5409936	318	1118	198	477	33%	65%	64%
DL434	3	4	478491	5410212	323	547	90	273	40%	61%	60%
DL489	2	3	477874	5409535	292	773	191	613	51%	61%	60%
DL537	3	4	477732	5409793	290	605	150	470	55%	60%	56%
DL520	5	6	477720	5410126	295	3988	1147	3730	57%	58%	60%
DL422	5	6	478493	5410279	314	617	121	340	37%	58%	57%
DL522	4	5	477781	5410352	301	599	127	448	44%	55%	56%
DL187	6	7	479500	5408941	310	3169	102	319	6%	54%	50%
DL490	2	3	477257	5409655	283	760	204	663	49%	53%	53%
DL315	8	9	478971	5410092	319	1027	279	824	45%	52%	53%
DL480	6	7	479123	5408756	312	590	118	337	39%	51%	53%
DL540	3	4	477489	5409606	281	1010	222	834	41%	47%	48%
DL432	10	11	478465	5410197	306	767	246	710	40%	40%	41%
DL393	4	5	479358	5410194	277	377	90	277	39%	38%	45%
DL450	10	11	478360	5410184	313	930	263	787	35%	37%	39%
DL404	1	2	478428	5410211	312	1060	387	1024	39%	35%	39%
DL533	2	3	477753	5409975	293	906	183	535	20%	33%	32%
DL496	5	6	479549	5408532	316	1788	638	1514	25%	32%	29% 24%
DL514	3	4	479570	5410109	306	1222	239	598	17%	31%	34% 22%
DL426	9 6	10 7	478514 479484	5410091	314	601	160	535	29% 28%	27% 25%	33% 20%
DL415	4	5		5410101 5410353	303	696	218	629 901		25% 23%	30% 28%
DL531 DL450			477930 478360	5410353 5410184	292 313	1073 1535	328 546	1373	27% 25%	23% 23%	28% 28%
DL450 DL453	8 4	9 5	478300	5410184	306	2721	1041	2491	23% 24%	23 <i>%</i> 22%	28% 26%
DL433 DL532		6	478427	5410293 5410093	305	1076	303	962	24%	22% 21%	28% 29%
DL532 DL477	5 5	6	477830 479619	5410093 5408662	305 313	2579	303 809	962 1917	20%	21% 20%	29% 25%
DL477 DL435		12	478536	5408662	323	856	262	812	20%	18%	25%
DL435 DL427	9	12	478567	5410208 5410077	323 309	856 1106	325	812 975	19%	18% 16%	21% 21%
DL427 DL497	9 4	5	478387	5408563	311	538	525 145	375	9%	18%	21% 12%
DL437 DL413	4 14	15	479382	5409399	327	1544	396	1179	15%	13%	12%
DL530	8	9	477891	5410563	307	769	243	696	11%	11%	12%
DL313	9	10	479010	5410505 5410189	320	1116	437	990	10%	9%	12%
DL313	19	20	478986	5409330	326	866	226	767	8%	5% 7%	8%
DL420	18	19	478827	5409702	324	1139	348	1066	6%	5%	6%
DL420	19	20	478380	5410041	311	1004	372	884	8%	5%	9%
DL408	12	13	478567	5410077	309	1576	282	1529	4%	5%	5% 4%
DL462	14	15	478695	5409260	319	1549	427	1242	6%	5%	7%
DL402	2	3	478413	5409893	321	615	212	485	5%	4%	5%
DL408	4	5	479226	5409598	318	667	195	485	7%	4%	5%
DL414	2	3	479469	5409311	314	646	180	549		pending	270
	Average of all 49 leach test results					1075	288	833	33%	39%	40%
-			.51 1650115								
	Maximum test result				3988	1147	3730	68%	80%	79%	
IAC REE ⁷ : Mean of 36 of 49 samples above 24% extraction				1105	287	823	41%	50%	50%		

Standard conditions: 0.5 M (NH₄)₂SO₄ for 0.5 h, 2 wt%, room temp

Table 1 concluded

RUBBLE MOUND PROJECT AREA (EARLY STAGE DRILLING)

Summary results GDA 94 grid			Drill sample REE grades ppm. See ASX release 23/10/22		Desorption Extraction Rates (%) at ANSTO, Lucas Heights						
Hole	From (m)	To (m)	Easting	Northing	RL collar	TREO ¹ ppm	Perm Magnet REOs ²	TREO - CeO2 ³ ppm	Total REEs ⁴ %	Perm Magnet REEs ⁵ %	REEs - Ce ⁶ %
RM204	7	8	482310	5407171	295	766	239	659	81%	83%	82%
RM049	9	10	482533	5408095	280	741	200	587	52%	63%	65%
RM220	3	4	481653	5407402	269	2347	227	670	19%	58%	60%
RM055	3	4	482751	5407732	281	1031	318	874	50%	55%	54%
RM175	7	8	480826	5406210	227	3865	971	2114	50%	51%	48%
RM001	5	6	482420	5407559	300	1653	320	917	29%	50%	49%
RM035	5	6	482720	5407910	292	1358	391	966	24%	29%	33%
RM074	7	8	482639	5407309	282	1685	614	1448	25%	24%	28%
RM226	8	9	479953	5406857	312	1438	418	1322	17%	18%	18%
RM032	6	7	482741	5408062	287	1556	561	1427	17%	13%	19%
RM221	5	6	481738	5407716	246	1165	383	1027	12%	11%	13%
RM222	4	5	480381	5407981	286	993	243	690	12%	11%	16%
RM218	7	8	480766	5407707	287	1524	554	1247	12%	9%	14%
RM051	5	6	482661	5407587	287	2116	569	1195	5%	6%	8%
RM206	7	8	483841	5409149	196	1086	361	966	6%	5%	6%
RM176	7	8	481630	5405804	228	513	131	360	3%	4%	3%
RM217	21	22	480557	5407867	291	410	55	355	2%	3%	2%
RM217	3	4	480557	5407867	291	2511	680	2198	3%	3%	3%
RM114	12	13	482508	5407741	297	1961	866	1843	3%	2%	3%
RM170	8	9	480942	5405544	226	1125	352	797	2%	1%	3%
RM217	10	11	480557	5407867	291	933	399	858	0%	0%	0%
Average	Average of all 21 leach test results				1465	422	1072	20%	24%	25%	
Maximu	Maximum test result				3865	971	2198	81%	83%	82%	
IAC REE	IAC REE ⁷ : Mean of 8 of 21 samples above 24% extraction				1681	410	1029	41%	52%	52%	

Reference 1 TREO = total rare earth oxides ppm

2 Perm Magnet REOs = $Pr_6O_{11} + Nd_2O_3 + Tb_4O_7 + Dy_2O_3$ ppm

3 TREO - CeO_2 = TREO minus cerium oxide ppm

4 Total REEs = total rare earth elements (not oxides) % extraction

5 Perm Magnet REEs = Pr + Nd + Tb + Dy ppm % extraction

6 REEs - Ce = Total REEs - Ce ppm % extraction

7 IAC REE = ionic adsorption rare earth element mineralisation

Note: Extraction (%) is the percentage of the elements that dissolved into the leach solution. High results highlighted in teal. The high-value permanent magnet REE are praseodymium (Pr), neodymium (Nd), terbium (Tb) and dysprosium (Dy).

ABx is exploring for permanent magnet-rich REE in ionic adsorption clay deposits (IAC REE), which can be developed rapidly and at low cost with low technology risk. Its first REE-targeted drillhole into the Deep Leads REE mineralisation was drilled in October 2021 and drilling continued throughout 2022 and is on-going due to exceptional results, both grades and extractions.

ABx has made the first discovery of genuine IAC REE in Tasmania at Deep Leads. This is potentially Australia's best IAC REE occurrence because large zones of the deposit has high desorption extractions under standard desorption test conditions, which represent low-acid, low-cost processing.

Qualifying Statements

General

The information in this report that relate to Exploration Information are based on information compiled by Levy who is a member of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Levy is a qualified geologist and is a director of ABx Group Limited.

Mr Levy has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of exploration Results, Mineral Resources and Ore Reserves. Mr Levy has consented in writing to the inclusion in this report of the Exploration Information in the form and context in which it appears.

Disclaimer Regarding Forward Looking Statements

This ASX announcement (Announcement) contains various forward-looking statements. All statements other than statements of historical fact are forward-looking statements. Forward-looking statements are inherently subject to uncertainties in that they may be affected by a variety of known and unknown risks, variables and factors which could cause actual values or results, performance, or achievements to differ materially from the expectations described in such forward-looking statements.

ABx does not give any assurance that the anticipated results, performance, or achievements expressed or implied in those forward-looking statements will be achieved.

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary			
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 Drill holes samples to 25 metres maximum depth but typically to 12 metres depth 			
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration Aspects of the determination of mineralisation that are Material to the Public Report. 	n of any measurement tools or systems used.			
	 In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation d pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as v Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information 	where there is coarse gold that has inherent sampling problems.			
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Reverse circulation aircore chip sampling and push- tube coring. Grades of core samples correspond well with aircore sample grades. 			
Drill sample recovery	 Method of recording & assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery & ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Weight tests indicated reliable sample recovery No relationship between sample recovery and grade has been observed. 			
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	• Geologically logged by senior geologists. Every sample photographed, with photos, logs and assays entered into ABx's proprietary ABacus database.			
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Chips are subsampled using bauxite shovel and quartering method in accordance with ISO standards for fine damp clay material. Reassaying corresponds well 			
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 				
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external lab checks) & whether acceptable levels of accuracy (ie lack of bias) & precision have been established. 	 Assaying done at NATA-registered commercial labs of ALS Brisbane Australia and Labwest Minerals Analysis in Western Australia. Duplicate interlab assays corresponded well. Desorption extraction tests were conducted by ANSTO at Lucas Heights, Sydney NSW with ANSTO's assays done at ALS Brisbane. 			

<u>AB</u> xGroup

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All assaying done at NATA-registered commercial laboratories of ALS Brisbane Australia and Labwest Minerals Analysis Pty Ltd in Western Australia. Duplicated and redrilled holes correlated closely Duplicate interlab assays corresponded well. No adjustment of assay data done.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 GPS hole locations have been tested for accuracy on many prospects, all satisfactorily – usually within 1m. Grid Coordinates are GDA94 Topographic control by Lidar topography when needed
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling typically at 50 to 75 metre spacing on mineralised prospects Geological continuity is established by drill pattern Grade continuity is not yet established beyond 50m Sample compositing not applied
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Vertical holes through flat-dipping bauxite is appropriate Clay layer drapes over topography and accumulates in gullies. Vertical holes is appropriate orientation.
Sample security	• The measures taken to ensure sample security.	 Samples collected and bagged at every hole site and assembled onto pallets daily.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Several audits confirmed reliability

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Satisfactory to excellent. All tenements are in force, unencumbered and securely held by ABx All drilling is on freehold land with access approvals by landholders
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• ABx is the first company to explore for Rare Earth Elements in northern Tasmania. No prior work has been done by other parties
Geology	Deposit type, geological setting and style of mineralisation.	 Bauxite deposit formed on Lower Tertiary basalts overlying Jurassic dolerite

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 GPS location. Airborne Radar RL topography Lidar topography contoured at 1m height intervals All holes are short straight vertical holes
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All data are presented as received Intercept summaries, if and when presented, are length-weighted arithmetic averages Total Rare Earth Oxides (TREO) are an aggregate of all rare earth oxides. TREO-CeO2 is TREO minus Cerium oxide valus.
Relationship between mineralisation widths & intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralisation typically 3 to 6 metres thick and Drillholes are sampled at 1 metre intervals Horizontal layers drilled by vertical holes means intercept thickness is true thickness
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 N.A. Diagrams presented give appropriate information
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All new results are reported in this report and reference made to previous tabulation of data
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 N.A. Information provided is appropriate.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Step-out drilling over a wider area has been planned, work plans submitted and new drill rig configurations have been developed.