
ASX ABX

## Significant Increase in Rare Earth Prospect Size

- The areal extent of ABx's Rare Earth Elements (REE) mineralisation at its DL130 project has significantly increased by new assay results that revealed enrichment trends towards NW, NE & Sth
- North-western hole DL162 is the highest grade, thickest intercept to date and is relatively enriched in Terbium and Dysprosium which are the highest-priced of the REE metals
- DL130 mineralisation is enriched in Neodymium (Nd), Praseodymium (Pr), Terbium and Dysprosium (Dy) which are the rare earth elements in super magnets used in electric vehicles, wind turbines, smart phones and military electronics – see Figure 1
- The new results confirm that the REE mineralisation at DL130 is zoned, which will influence the design of bulk sampling and metallurgical testwork in coming weeks
- The drill rig is being upgraded in readiness for drilling the possible "Source Rock" that lies to the northeast of the high grade zone – see Figure 3 below

Australian Bauxite Limited (ASX:ABX) is pleased to report the latest rare earth element (**REE**) results from exploration at the DL130 bauxite-REE project in northern Tasmania (see Figure 2):

- The new samples have significantly increased the areal extent of REE enrichment at DL130 by identifying new enrichment zones trending to the northeast, northwest and to the south
- The main REE element at DL130 is Neodymium which is the main component of super-magnets used in electric vehicles, wind turbines, smart phones and military electronics
- Samples in hole DL162 are relatively enriched in the most highly valuable Terbium and Dysprosium REE and expands the prospectivity significantly to the north-west (see Figure 2).





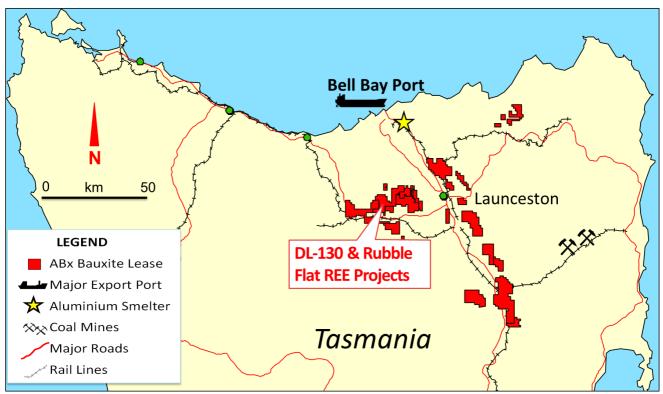



Figure 2: Location of ABx's REE Discoveries in Northern Tasmania




Figure 3: Neodymium grades in drillholes at DL130 plotted on a topographic image. Nd2O3 targets now identified to the northeast, northwest and south. Target 1 (blue) is in clay zones on the plateau. Target 2 (green) is interpreted to be in valley sediments.



## Terbium and Dysprosium increasing to the North-West

Hole DL162 is the most north-western hole in the mineralised zone (see Figure 3 above) and it has higher levels of high-priced super-magnet Rare Earth Elements, terbium and dysprosium (see price charts in Figure 4 below). Hole DL162 in the northwest is the highest grade and thickest intercept to date and has expanded the Target 1 substantially in a north-western direction as shown in Figure 3.

The previous highest grade hole DL313 is in the northeast of the mineralised zone which remains a major Target 1 for expansion of the mineralisation at this Prospect.

Both holes DL162 and DL313 appear to have finished still in the REE mineralisation - see Table 1:

|      |         |       | Super-ma | agnet REE |       |                                |
|------|---------|-------|----------|-----------|-------|--------------------------------|
| Hole | From-To | Nd₂O₃ | Pr₂O₃    | Tb₂O₃     | Dy₂O₃ | Nd <sub>2</sub> O <sub>3</sub> |
|      | m       | ppm   | ppm      | ppm       | ppm   | equiv ppm                      |

Latest Highest-Grade Drillhole DL162

| DL162 | 6 to 7m | 210 | 46 | 10 | 53 | 619 |
|-------|---------|-----|----|----|----|-----|
| DL162 | 7 to 8m | 209 | 47 | 10 | 53 | 615 |
| DL162 | 8 to 9m | 230 | 51 | 11 | 62 | 702 |

Table 1:Rare Earth Assay Results fromholes DL162 and DL313

 $Nd_2O_3$  equivalent =  $Nd_2O_3$  + 1.01 x  $Pr_2O_3$  + 11.89 x  $Tb_2O_3$  + 4.64 x  $Dy_2O_3$  based on medium-term REE prices – see price charts in Figure 4

**Previous Highest-Grade Drillhole DL313** 

| DL313 | 6 to 7m  | 9   | 2  | 0 | 2  | 26  |
|-------|----------|-----|----|---|----|-----|
| DL313 | 8 to 9m  | 51  | 14 | 2 | 12 | 143 |
| DL313 | 9 to 10m | 301 | 88 | 7 | 37 | 645 |

See JORC-Code details in Appendix 1

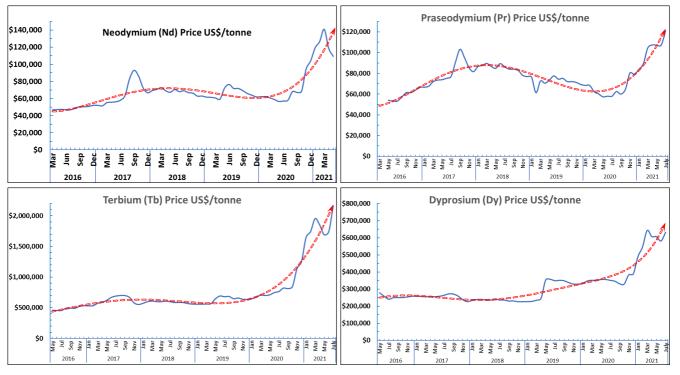



 Figure 4:
 Prices per tonne for the 4 REE used for super-magnets
 Sources: Chinese exports, cross-referenced with Kitco data.

 These prices are used for the Nd-equivalent price-weighted grades in Table 1 above and Table 2 below.



#### Table 2: Rare Earth Assay Results from DL130 Prospect – see JORC Statement in Appendix 1

|            |                |                                       |                                |                                |                                |                                | 1                                           |                                | 0.1 0.5          |              |                                                               |
|------------|----------------|---------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------------------|--------------------------------|------------------|--------------|---------------------------------------------------------------|
|            |                | From-To                               |                                | Super-ma                       | -                              |                                |                                             | 6- 0                           | Other RE         |              |                                                               |
|            | Hole           | m                                     | Nd <sub>2</sub> O <sub>3</sub> | Pr <sub>2</sub> O <sub>3</sub> | Tb <sub>2</sub> O <sub>3</sub> | Dy <sub>2</sub> O <sub>3</sub> | Nd <sub>2</sub> O <sub>3</sub><br>equiv ppm | Ce <sub>2</sub> O <sub>3</sub> | Other<br>BEE nom | TOTAL        | Comments                                                      |
|            |                |                                       | ppm                            | ppm                            | ppm                            | ppm                            |                                             | ppm                            |                  | REE ppm      |                                                               |
| New        | DL162          | 6 to 7m                               | 210                            | 46                             | 10                             | 53                             | 619                                         | 224                            | 608              | 1150         | High Tb & Dy grades                                           |
| New<br>New |                | 7 to 8m<br>8 to 9m                    | 209<br>230                     | 47<br>51                       | 10<br>11                       | 53<br>62                       | 615<br>702                                  | 216<br>126                     | 606<br>734       | 1140<br>1214 | High Tb & Dy grades<br>High Tb, Dy grades. Hole stopped short |
| INCOV      |                | · · · · · · · · · · · · · · · · · · · | г                              |                                |                                |                                |                                             |                                |                  |              | The supper short                                              |
|            | DL313          | 6 to 7m                               | 9                              | 2                              | 0                              | 2                              | 26                                          | 246                            | 25               | 284          |                                                               |
|            | DL313<br>DL313 | 8 to 9m<br>9 to 10m                   | 51<br>301                      | 14<br>88                       | 2                              | 12<br>37                       | 143<br>645                                  | 268<br>121                     | 135<br>553       | 482<br>1107  | Hole stopped short                                            |
|            |                |                                       | L                              | 1                              |                                |                                |                                             | 121                            |                  |              | The stopped short                                             |
|            | DL315          | 3 to 4m                               | 6                              | 2                              | 0                              | 2                              | 22                                          | 29                             | 22               | 61           |                                                               |
|            | DL315          | 5 to 6m                               | 26                             | 7                              | 1                              | 8                              | 87                                          | 394                            | 86               | 522          |                                                               |
|            | DL315          | 8 to 9m                               | 183                            | 45                             | 7                              | 42                             | 508                                         | 193                            | 545              | 1016         |                                                               |
|            | DL315<br>DL315 | 9 to 10m<br>9 to 10m                  | 156<br>146                     | 36<br>35                       | 5                              | 33<br>35                       | 409<br>407                                  | 176<br>171                     | 395<br>398       | 800<br>789   | Repeat assay, different lab<br>Hole stopped short             |
|            |                | · · · · · · · · · · · · · · · · · · · | L                              | 1                              |                                | 1                              | 1                                           | 1                              |                  | 1            |                                                               |
|            | DL156          | 6 to 7m                               | 162                            | 37                             | 6                              | 35                             | 436                                         | 227                            | 367              | 835          | Hole stopped short                                            |
| New        | DL172          | 4 to 5m                               | 29                             | 7                              | 2                              | 10                             | 103                                         | 86                             | 101              | 235          |                                                               |
| New        | DL172          | 5 to 6m                               | 118                            | 30                             | 5                              | 26                             | 325                                         | 217                            | 321              | 717          | Hole stopped short                                            |
| 1          | DL227          | 5 to 6m                               | 15                             | 4                              | 1                              | 4                              | 48                                          | 232                            | 42               | 298          |                                                               |
|            | DL227          | 8 to 9m                               | 101                            | 26                             | 4                              | 27                             | 306                                         | 119                            | 298              | 576          | Hole stopped short                                            |
| New        | DL316          | 3 to 4m                               | 52                             | 13                             | 2                              | 10                             | 133                                         | 86                             | 133              | 296          |                                                               |
| New        | DL316          | <mark>4 to 5m</mark>                  | 119                            | 31                             | 4                              | 23                             | 299                                         | 1909                           | 278              | 2363         | Ce-rich top of mineralised zone                               |
|            | DL236          | 8 to 9m                               | 81                             | 19                             | 4                              | 25                             | 264                                         | 547                            | 259              | 934          |                                                               |
|            | DL239          | 2 to 3m                               | 18                             | 5                              | 0                              | 2                              | 36                                          | 38                             | 41               | 105          |                                                               |
|            | DL239          | 7 to 8m                               | 65                             | 15                             | 3                              | 19                             | 202                                         | 301                            | 192              | 594          |                                                               |
|            | DL221          | 1 to 2m                               | 8                              | 2                              | 1                              | 3                              | 32                                          | 82                             | 44               | 140          |                                                               |
| I          | DL221          | 9 to 10m                              | 62                             | 14                             | 2                              | 13                             | 166                                         | 119                            | 159              | 370          | 1                                                             |
|            | DL221          | 10to 11m                              | 47                             | 11                             | 2                              | 12                             | 137                                         | 92                             | 136              | 300          |                                                               |
|            | DL221          | 11to 12m                              | 66                             | 15                             | 3                              | 17                             | 193                                         | 117                            | 207              | 424          |                                                               |
|            | DL222          | 6 to 7m                               | 49                             | 11                             | 2                              | 10                             | 128                                         | 185                            | 114              | 371          |                                                               |
|            | DL222          | 7 to 8m                               | 60                             | 13                             | 2                              | 13                             | 162                                         | 149                            | 154              | 391          |                                                               |
|            | DL222          | 7 to 8m                               | 64                             | 13                             | 2                              | 12                             | 160                                         | 152                            | 148              | 392          | Repeat assay, different lab                                   |
|            | DL222          | 8 to 9m                               | 14                             | 4                              | 1                              | 4                              | 45                                          | 341                            | 37               | 401          | Wet, depleted. Hole stopped short                             |
|            | DL321          | 6 to 7m                               | 51                             | 13                             | 2                              | 13                             | 146                                         | 1093                           | 138              | 1310         | Ce-rich top of mineralised zone                               |
|            | DL228          | 4 to 5m                               | 6                              | 2                              | 0                              | 2                              | 21                                          | 122                            | 20               | 152          |                                                               |
|            | DL228          | 5 to 6m                               | 16                             | 4                              | 1                              | 5                              | 54                                          | 224                            | 51               | 301          |                                                               |
|            | DL228          | 6 to 7m                               | 30                             | 7                              | 1                              | 8                              | 93                                          | 298                            | 92               | 436          |                                                               |
|            | DL228<br>DL228 | 6 to 7m                               | 30<br>48                       | 7                              | 1 2                            | 8<br>13                        | 90<br>142                                   | 403<br>232                     | 88<br>127        | 537<br>433   | Repeat assay, different lab                                   |
|            |                | 8 to 9m                               |                                |                                |                                |                                |                                             |                                |                  |              |                                                               |
| I.         | DL223          | 6 to 7m                               | 11                             | 3                              | 1                              | 3                              | 35                                          | 115                            | 33               | 166          |                                                               |
|            | DL223          | 8 to 9m                               | 50                             | 11                             | 2                              | 11                             | 134                                         | 76                             | 129              | 278          |                                                               |
|            | DL234          | 8 to 9m                               | 42                             | 10                             | 2                              | 11                             | 126                                         | 187                            | 116              | 369          |                                                               |
|            | DL303          | 5 to 6m                               | 7                              | 2                              | 0                              | 2                              | 23                                          | 163                            | 20               | 194          |                                                               |
|            | DL303          | 7 to 8m                               | 33                             | 9                              | 1                              | 9                              | 100                                         | 378                            | 91               | 521          |                                                               |
|            | DL303          | 8 to 9m                               | 42                             | 10                             | 2                              | 10                             | 116                                         | 224                            | 107              | 394          |                                                               |
|            | DL303          | 8 to 9m                               | 43                             | 10                             | 2                              | 9                              | 115                                         | 299                            | 101              | 464          | Repeat assay, different lab                                   |
| 1          | DL317          | 6 to 7m                               | 37                             | 10                             | 2                              | 11                             | 116                                         | 588                            | 101              | 747          |                                                               |
|            | DL317          | 8 to 9m                               | 16                             | 4                              | 1                              | 6                              | 56                                          | 246                            | 46               | 318          |                                                               |
|            | DL173          | 5 to 6m                               | 38                             | 9                              | 2                              | 10                             | 112                                         | 223                            | 104              | 385          |                                                               |
|            | DL238          | 6 to 7m                               | 17                             | 4                              | 1                              | 5                              | 52                                          | 574                            | 43               | 643          |                                                               |
|            | DL238          | 7 to 8m                               | 34                             | 8                              | 1                              | 9                              | 102                                         | 253                            | 90               | 396          |                                                               |
|            | DL238          | 7 to 8m                               | 35                             | 8                              | 1                              | 9                              | 100                                         | 342                            | 89               | 484          | Repeat assay, different lab                                   |

 $Nd_2O_3$  equivalent =  $Nd_2O_3 + 1.01 \times Pr_2O_3 + 11.89 \times Tb_2O_3 + 4.64 \times Dy_2O_3$  based on medium-term REE prices – see price charts in Figure 4



#### Table 2: Rare Earth Assay Results from DL130 Prospect continued

| Hole         From-To<br>m         Nd <sub>2</sub> O <sub>3</sub> Pr <sub>2</sub> O <sub>3</sub> Tb <sub>2</sub> O <sub>3</sub> Dy <sub>2</sub> O <sub>3</sub> Nd <sub>2</sub> O <sub>3</sub> Ce <sub>2</sub> O <sub>3</sub> Other         TOTAL           m         ppm         ppm         ppm         ppm         equiv ppm         REE ppm         REE ppm         Comments |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| m ppm ppm ppm ppm equiv ppm ppm REE ppm REE ppm                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                |          |
| New         DL163         7 to 8m         15         4         1         3         42         108         42         173           New         DL163         7 to 8m         15         4         1         3         42         108         42         173                                                                                                                    |          |
| New         DL163         8 to 9m         37         9         1         8         99         247         91         393                                                                                                                                                                                                                                                       |          |
| New         DL293         3 to 4m         6         2         0         2         24         218         20         249           New         DL293         4 to 5m         10         2         1         3         34         180         31         228                                                                                                                     |          |
| New         DL293         5 to 6m         31         7         2         9         99         761         88         898                                                                                                                                                                                                                                                       |          |
| New DL174 0 to 1m 28 7 1 7 82 60 79 182                                                                                                                                                                                                                                                                                                                                        |          |
| DL306         8 to 9m         27         7         1         6         71         411         64         516                                                                                                                                                                                                                                                                   |          |
| DL168         2 to 3m         7         2         0         2         21         20         21         52                                                                                                                                                                                                                                                                      |          |
| DL168         4 to 5m         18         5         1         5         57         288         55         373                                                                                                                                                                                                                                                                   |          |
| DL237         6 to 7m         7         2         0         1         17         68         18         96                                                                                                                                                                                                                                                                      |          |
| DL237         8 to 9m         23         6         1         4         54         111         49         193                                                                                                                                                                                                                                                                   |          |
| DL314 6 to 7m 24 7 1 3 52 121 43 198                                                                                                                                                                                                                                                                                                                                           |          |
| DL314         8 to 9m         7         2         0         1         19         266         18         295                                                                                                                                                                                                                                                                    |          |
| DL269         6 to 7m         16         5         0         3         38         94         39         156                                                                                                                                                                                                                                                                    |          |
| DL269         8 to 9m         14         3         1         5         50         83         47         154                                                                                                                                                                                                                                                                    |          |
| DL235         3 to 4m         5         1         0         1         17         29         16         54                                                                                                                                                                                                                                                                      |          |
| DL235         5 to 6m         17         4         1         4         48         79         47         152                                                                                                                                                                                                                                                                    |          |
| New DL311 10to 11m 8 2 0 3 28 105 26 144                                                                                                                                                                                                                                                                                                                                       |          |
| New         DL311         11to 12m         15         4         1         4         47         105         41         170                                                                                                                                                                                                                                                      |          |
| DL169         5 to 6m         18         4         1         4         47         466         44         537                                                                                                                                                                                                                                                                   |          |
| DL287         6 to 11m         9         3         0         1         20         90         25         128                                                                                                                                                                                                                                                                    |          |
| DL287         11to 12m         19         5         1         3         45         255         49         333                                                                                                                                                                                                                                                                  |          |
| DL319         4 to 5m         8         2         0         2         21         35         20         66           DL319         5 to 6m         16         4         1         3         42         402         40         466                                                                                                                                               |          |
| DL319         5 to 6m         17         4         1         3         43         614         39         677         Repeat assay, diffe                                                                                                                                                                                                                                       | rent lab |
| DL319         6 to 7m         15         4         0         3         38         299         37         358           DL319         7 to 8m         15         4         1         3         38         640         35         696                                                                                                                                            |          |
| DL319         7 to 8m         15         4         1         3         38         640         35         696           DL319         8 to 9m         17         4         1         3         44         717         40         782                                                                                                                                            |          |
| DL305         6 to 7m         15         4         1         4         43         200         38         260                                                                                                                                                                                                                                                                   |          |
| DL077 4 to 5m 16 4 1 3 43 69 44 137                                                                                                                                                                                                                                                                                                                                            |          |
| DL077         4 to 5m         16         4         1         3         42         70         44         137         Repeat assay, diffe                                                                                                                                                                                                                                        | rent lab |
| DL134         0 to 1m         17         6         0         3         40         85         64         175                                                                                                                                                                                                                                                                    |          |
| DL134         7 to 8m         4         1         0         1         13         29         18         54                                                                                                                                                                                                                                                                      |          |
| DL138         8 to 9m         20         6         0         2         39         78         47         153                                                                                                                                                                                                                                                                    |          |
| DL171         3 to 4m         3         1         0         1         8         14         9         27                                                                                                                                                                                                                                                                        |          |
| DL171         5 to 7m         14         4         0         3         39         289         41         352                                                                                                                                                                                                                                                                   |          |
| DL219         2 to 3m         5         1         0         2         18         29         18         56                                                                                                                                                                                                                                                                      |          |
| DL219         7 to 8m         13         3         0         3         35         130         33         182                                                                                                                                                                                                                                                                   |          |
| New         DL240         7 to 8m         17         6         0         1         33         74         53         152                                                                                                                                                                                                                                                        |          |
| New         DL240         8 to 9m         8         3         0         1         19         67         28         108                                                                                                                                                                                                                                                         |          |
| DL220         11to 12m         9         2         1         3         33         64         31         110                                                                                                                                                                                                                                                                    |          |
| New         DL308         10to 11m         8         3         0         2         21         59         33         105                                                                                                                                                                                                                                                        |          |
| New         DL308         11to 12m         9         2         0         3         32         69         37         121                                                                                                                                                                                                                                                        |          |
| New         DL225         7 to 8m         9         2         0         2         27         59         27         100           New         DL225         8 to 9m         11         3         0         2         30         59         29         104                                                                                                                       |          |
| DL135         4 to 5m         7         2         0         1         18         35         25         71                                                                                                                                                                                                                                                                      |          |
| DL135         7 to 8m         10         3         0         2         30         881         31         928                                                                                                                                                                                                                                                                   |          |
| New         DL292         7 to 8m         8         2         0         3         29         56         25         95                                                                                                                                                                                                                                                          |          |
| New         DL232         F to sin         8         2         0         3         23         33           New         DL292         8 to 9m         9         2         0         2         27         76         25         115                                                                                                                                              |          |
| DL217         8 to 9m         15         5         0         1         29         78         50         149                                                                                                                                                                                                                                                                    |          |
| DL217         8 to 9m         15         5         0         1         29         80         50         152         Repeat assay, diffe                                                                                                                                                                                                                                        | rent lab |



### **Summary comments**

ABx exploration manager, Paul Glover said; "This discovery is starting to take shape but we are still at an early discovery stage. The latest set of results confirmed that this prospect is open in several directions and also showed that some early drill holes did not test the REE enriched horizon and need to be redrilled carefully to evaluate the clay-rich zones that are sitting on the basement bedrock. The prospect is now recognised to be untested to the south and this potential will be drilled in due course.

Most importantly, the latest results also showed that the mineralised zone is increasing in grade and thickness to the northwest where there is a large tract of untested ground that has the right geology to be prospective. This has been exciting new information.

The previously recognised trend of increasing grades to the northeast also remains an important direction for expansion of exploration – see Figure 3.

ABx is assessing the value of a geophysical program to map the subsurface channels that may be carrying high grade rare earth elements. There is also potential for the REE-rich clay horizon to outcrop on slopes around the edge of this plateau and this could be revealed by a shallow geophysical survey.

Because the REE occurs in clays and are soluble, the mineralisation appears likely to be Ionic Adsorption Clay deposits ("IAC") which have been a major source of low-cost REE production in southern China. We are designing a bulk sampling program to allow metallurgical tests to confirm the deposit type and to design the best way to produce a bulk REE concentrate from this mineralisation."

This announcement is authorised by the Board of Australian Bauxite Limited.

For further information please contact: Ian Levy, CEO Australian Bauxite Limited Mobile: +61 (0) 407 189 122 Email: <u>ilevy@australianbauxite.com.au</u>



## **Qualifying statements**

#### General regarding exploration data and reporting

The information in this report that relate to Exploration Information and Mineral Resources are based on information compiled by Jacob Rebek and Ian Levy who are members of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Rebek and Mr Levy are qualified geologists and Mr Levy is a director of Australian Bauxite Limited.

Ian Levy has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ian Levy consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

#### Mainland

The information relating to Mineral Resources on the Mainland was prepared and first disclosed under the JORC Code 2004. It has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported.

Mr Rebek and Mr Levy have sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which they are undertaking to qualify as a Competent Person as defined in the 2004 Edition of the Australasian Code for Reporting of exploration Results, Mineral Resources and Ore Reserves. Mr Rebek and Mr Levy have consented in writing to the inclusion in this report of the Exploration Information in the form and context in which it appears.

#### Tasmania

The information relating to Exploration Information and Mineral Resources in Tasmania has been prepared or updated under the JORC Code 2012. Mr Rebek and Mr Levy have sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which they are undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.

Mr Rebek and Mr Levy have consented in writing to the inclusion in this report of the Exploration Information in the form and context in which it appears.

#### **Disclaimer Regarding Forward Looking Statements**

This ASX announcement (Announcement) contains various forward-looking statements. All statements other than statements of historical fact are forward-looking statements. Forward-looking statements are inherently subject to uncertainties in that they may be affected by a variety of known and unknown risks, variables and factors which could cause actual values or results, performance or achievements to differ materially from the expectations described in such forward-looking statements.

ABx does not give any assurance that the anticipated results, performance or achievements expressed or implied in those forward-looking statements will be achieved.

#### JORC Code, 2012 Edition – Table 1 report

See ASX release dated 04 May 2021 and update in Appendix 1.



# JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria                                                       | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                    |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques                                         | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Drill holes samples to 25 metres maximum depth<br/>but typically to 12 metres depth</li> </ul>                                                                                                       |
| Drilling<br>techniques                                         | <ul> <li>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka,<br/>sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails,<br/>face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Reverse circulation rotary percussion</li> </ul>                                                                                                                                                     |
| Drill sample<br>recovery                                       | <ul> <li>Method of recording &amp; assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery &amp; ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Weight tests indicated reliable sample recovery</li> </ul>                                                                                                                                           |
| Logging                                                        | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Geologically logged in detail by senior<br/>professional geologists. Every sample photo-<br/>graphed, with photos and logs and assays entered<br/>into ABx's proprietary ABacus database.</li> </ul> |
| Sub-sam-<br>pling tech-<br>niques and<br>sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              | Chips are subsampled using bauxite shovel<br>method in accordance with ISO standards                                                                                                                          |



| Criteria                                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>assay data<br>and labora-<br>tory tests            | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | <ul> <li>All assaying done at NATA-registered commercial<br/>laboratories of ALS Brisbane Australia and<br/>Labwest Minerals Analysis Pty Ltd in Western<br/>Australia. Duplicate interlab assays done.</li> <li>Round robin assays with 4 other major laborato-<br/>ries confirmed accuracy and precision meets in-<br/>dustry standards.</li> </ul> |
| Verification<br>of sampling<br>and assay-<br>ing                 | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                      | <ul> <li>All assaying done at NATA-registered commercial<br/>laboratories of ALS Brisbane Australia and<br/>Labwest Minerals Analysis Pty Ltd in Western<br/>Australia. Duplicate interlab assays showed ex-<br/>cellent correspondence.</li> </ul>                                                                                                   |
| Location of<br>data points                                       | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                                                                | <ul> <li>GPS hole locations have been tested for accuracy<br/>on many prospects, all satisfactorily – within 1m.</li> </ul>                                                                                                                                                                                                                           |
| Data spac-<br>ing and dis-<br>tribution                          | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                                                                                                                                                                                                                                                   | <ul> <li>Drilling typically at 50 to 75 metre spacing on min-<br/>eralised prospects</li> </ul>                                                                                                                                                                                                                                                       |
| Orientation of<br>data in relation<br>to geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul>                                                                                                                                                                                                                                   | <ul> <li>Vertical holes through flat-dipping bauxite is as good as it gets</li> </ul>                                                                                                                                                                                                                                                                 |
| Sample se-<br>curity                                             | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Samples collected and assembled onto pallets<br/>every day</li> </ul>                                                                                                                                                                                                                                                                        |
| Audits or<br>reviews                                             | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Several audits confirmed reliability                                                                                                                                                                                                                                                                                                                  |



## Section 2 Reporting of Exploration Results

| Criteria listed                                       | in the preceding section also apply to this section.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                                              | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                               |
| Mineral<br>tenement<br>and land<br>tenure sta-<br>tus | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul>                                                                                                                                                                                                                                                                                          | Satisfactory to excellent. All tenements are unen-<br>cumbered                                                                                                                                                                                                                                           |
| Exploration<br>done by<br>other par-<br>ties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>3 industry majors and two customers have approved exploration methods and data collection, interpretation and reporting</li> </ul>                                                                                                                                                              |
| Geology                                               | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bauxite deposit formed on Lower Tertiary basalts                                                                                                                                                                                                                                                         |
| Drill hole<br>Information                             | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>GPS location.</li> <li>Airborne Radar RL topography</li> <li>All holes are short straight vertical holes</li> </ul>                                                                                                                                                                             |
| Data ag-<br>gregation<br>methods                      | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                               | <ul> <li>All data is presented. To enable comparisons be-<br/>tween different mixtures of valuable elements, an<br/>aggregation into a price-weighted equivalence of<br/>Neodymium oxide was used as follows: Nd2O3<br/>equivalent = Nd2O3 + 1.01 x Pr2O3 + 11.89 x<br/>Tb2O3 + 4.64 x Dy2O3.</li> </ul> |



| Criteria                                                                                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                           |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Relation-<br>ship be-<br>tween min-<br>eralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>           | <ul> <li>Mineralisation typically 3 to 6 metres thick and<br/>Drillholes are sampled at 1 metre intervals</li> </ul> |
| Diagrams                                                                                 | • Appropriate maps and sections (with scales) and tabulations of intercepts should be in-<br>cluded for any significant discovery being reported These should include, but not be lim-<br>ited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                                               | • N.A.                                                                                                               |
| Balanced reporting                                                                       | • Where comprehensive reporting of all Exploration Results is not practicable, representa-<br>tive reporting of both low and high grades and/or widths should be practiced to avoid mis-<br>leading reporting of Exploration Results.                                                                                                                                                                                       | <ul> <li>All new results are reported in this report</li> </ul>                                                      |
| Other sub-<br>stantive ex-<br>ploration<br>data                                          | <ul> <li>Other exploration data, if meaningful and material, should be reported including (but not<br/>limited to): geological observations; geophysical survey results; geochemical survey re-<br/>sults; bulk samples – size and method of treatment; metallurgical test results; bulk density,<br/>groundwater, geotechnical and rock characteristics; potential deleterious or contaminating<br/>substances.</li> </ul> | • N.A.                                                                                                               |
| Further<br>work                                                                          | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                         | To be planned                                                                                                        |